On the length of nonsolutions to equations with constants in some linear groups

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We show that for any finite-rank–free group (Formula presented.), any word-equation in one variable of length (Formula presented.) with constants in (Formula presented.) fails to be satisfied by some element of (Formula presented.) of word-length (Formula presented.). By a result of the first author, this logarithmic bound cannot be improved upon for any finitely generated group (Formula presented.). Beyond free groups, our method (and the logarithmic bound) applies to a class of groups including (Formula presented.) for all (Formula presented.), and the fundamental groups of all closed hyperbolic surfaces and 3-manifolds. Finally, using a construction of Nekrashevych, we exhibit a finitely generated group (Formula presented.) and a sequence of word-equations with constants in (Formula presented.) for which every nonsolution in (Formula presented.) is of word-length strictly greater than logarithmic.

Details

OriginalspracheEnglisch
Seiten (von - bis)2338-2349
Seitenumfang12
FachzeitschriftBulletin of the London Mathematical Society
Jahrgang56
Ausgabenummer7
PublikationsstatusVeröffentlicht - Juli 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7245-2861/work/173514038

Schlagworte

ASJC Scopus Sachgebiete