On the law of killed exponential functionals

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

For two independent Lévy processes ξ and η and an exponentially distributed random variable τ with parameter q > 0 that is independent of ξ and η, the killed exponential functional is given by Vq,ξ,η:= τ 0e−ξss. With the killed exponential functional arising as the stationary distribution of a Markov process, we calculate the infinitesi-mal generator of the process and use it to derive different distributional equations describing the law of Vq,ξ,η, as well as functional equations for its Lebesgue density in the absolutely continuous case. Various special cases and examples are considered, yielding more explicit information on the law of the killed exponential functional and illustrating the applications of the equations obtained. Interpreting the case q = 0 as τ = ∞ leads to the classical exponential functional ∞ 0 e−ξss, allowing to extend many previous results to include killing.

Details

OriginalspracheEnglisch
Aufsatznummer60
Seiten (von - bis)1-35
FachzeitschriftElectronic Journal of Probability
Jahrgang26
Ausgabenummer60
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85106927735
ORCID /0000-0002-9999-7589/work/142238024

Schlagworte