On the lattice property of shard orders
Publikation: Beitrag zu Konferenzen › Paper › Beigetragen › Begutachtung
Beitragende
Abstract
Let L be a congruence-uniform lattice. In this article, we investigate the shard order on L that was introduced by N. Reading. When L can be realized as a poset of regions of a hyperplane arrangement the shard order is always a lattice. For general L, however, this fails. We provide a necessary condition for the shard order to be a lattice, and we show how to construct a congruence-uniform lattice L0 from L such that the shard order on L0 fails to be a lattice.
Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Veröffentlicht - 2018 |
Peer-Review-Status | Ja |
Konferenz
Titel | 30th international conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2018 |
---|---|
Dauer | 16 - 20 Juli 2018 |
Stadt | Hanover |
Land | USA/Vereinigte Staaten |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Biclosed sets, Congruence-uniform lattices, Crosscut theorem, Interval doubling, Möbius function, Semidistributive lattices