On the Finite Element Approximation of Fourth-Order Singularly Perturbed Eigenvalue Problems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We consider fourth-order singularly perturbed eigenvalue problems in one-dimension and the approximation of their solution by the h version of the Finite Element Method (FEM). In particular, we use a {C1-conforming FEM with piecewise polynomials of degree p ≥ 3 defined on an exponentially graded mesh. We show that the method converges uniformly, with respect to the singular perturbation parameter, at the optimal rate when the error in the eigenvalues is measured in absolute value and the error in the eigenvectors is measured in the energy norm. We also illustrate our theoretical findings through numerical computations for the case p = 3 {p=3}.

Details

OriginalspracheEnglisch
Seiten (von - bis)465-476
Seitenumfang12
FachzeitschriftComputational methods in applied mathematics
Jahrgang22
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Apr. 2022
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Boundary Layers, Exponentially Graded Mesh, Finite Element Method, Fourth Order Singularly Perturbed Eigenvalue Problem, Uniform Convergence