On the existence of distributional potentials

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We present proofs for the existence of distributional potentials (Formula presented.) for distributional vector fields (Formula presented.), that is, (Formula presented.), where Ω is an open subset of (Formula presented.). The hypothesis in these proofs is the compatibility condition (Formula presented.) for all (Formula presented.), if Ω is simply connected, and a stronger condition in the general case. A key tool in our treatment is the Bogovskiĭ formula, assigning vector fields (Formula presented.) satisfying (Formula presented.) to functions (Formula presented.) with (Formula presented.). The results are applied to properties of Hilbert spaces of functions occurring in the treatment of the Stokes operator and the Navier–Stokes equations.

Details

OriginalspracheEnglisch
Seiten (von - bis)424-433
Seitenumfang10
FachzeitschriftMathematische Nachrichten
Jahrgang296
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2023
Peer-Review-StatusJa

Externe IDs

Scopus 85139961916
Mendeley ed942794-9b6e-35c4-aef4-3c8d7a306632

Schlagworte

DFG-Fachsystematik nach Fachkollegium

Schlagwörter

  • Bogovskiĭ formula, Poincaré's lemma, de Rham's theorem, distribution, stokes operator

Bibliotheksschlagworte