On the braided Connes-Moscovici construction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

In 1998, Connes and Moscovici defined the cyclic cohomology of Hopf algebras. In 2010, Khalkhali and Pourkia proposed a braided generalization: to any Hopf algebra H in a braided category B, they associate a paracocyclic object in B. In this paper, we explicitly compute the powers of the paracocyclic operator of this paracocyclic object. Also, we introduce twisted modular pairs in involution for H and derive (co)cyclic modules from them. Finally, we relate the paracocyclic object associated with H to that associated with an H-module coalgebra via a categorical version of the Connes-Moscovici trace.

Details

OriginalspracheEnglisch
Seiten (von - bis)837-889
Seitenumfang53
FachzeitschriftJournal of Noncommutative Geometry
Jahrgang18
Ausgabenummer 3
Frühes Online-Datum3 Dez. 2023
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85197368210

Schlagworte

Schlagwörter

  • Hopf algebras, braided monoidal categories, traces