On the braided Connes-Moscovici construction
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In 1998, Connes and Moscovici defined the cyclic cohomology of Hopf algebras. In 2010, Khalkhali and Pourkia proposed a braided generalization: to any Hopf algebra H in a braided category B, they associate a paracocyclic object in B. In this paper, we explicitly compute the powers of the paracocyclic operator of this paracocyclic object. Also, we introduce twisted modular pairs in involution for H and derive (co)cyclic modules from them. Finally, we relate the paracocyclic object associated with H to that associated with an H-module coalgebra via a categorical version of the Connes-Moscovici trace.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 837-889 |
| Seitenumfang | 53 |
| Fachzeitschrift | Journal of Noncommutative Geometry |
| Jahrgang | 18 |
| Ausgabenummer | 3 |
| Frühes Online-Datum | 3 Dez. 2023 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85197368210 |
|---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Hopf algebras, braided monoidal categories, traces