On polynomial and exponential decay of eigen-solutions to exterior boundary value problems for the generalized time-harmonic Maxwell system

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

We prove polynomial and exponential decay at infinity of eigen-vectors of partial differential operators related to radiation problems for time-harmonic generalized Maxwell systems in an exterior domain Ω⊂R N, N≥1, with non-smooth inhomogeneous, anisotropic coefficients converging near infinity with a rate r , τ>1, towards the identity. As a canonical application we show that the corresponding eigen-values do not accumulate and that by means of Eidus' limiting absorption principle a Fredholm alternative holds true.

Details

OriginalspracheEnglisch
Seiten (von - bis)133-160
Seitenumfang28
FachzeitschriftAsymptotic Analysis
Jahrgang79
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - 2012
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-4155-7297/work/145224262
WOS 000308063400006

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • electro-magnetic theory, exterior boundary value problems, Maxwell's equations, polynomial and exponential decay of eigen-solutions, radiating solutions, variable coefficients