On polynomial and exponential decay of eigen-solutions to exterior boundary value problems for the generalized time-harmonic Maxwell system
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove polynomial and exponential decay at infinity of eigen-vectors of partial differential operators related to radiation problems for time-harmonic generalized Maxwell systems in an exterior domain Ω⊂R N, N≥1, with non-smooth inhomogeneous, anisotropic coefficients converging near infinity with a rate r -τ, τ>1, towards the identity. As a canonical application we show that the corresponding eigen-values do not accumulate and that by means of Eidus' limiting absorption principle a Fredholm alternative holds true.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 133-160 |
Seitenumfang | 28 |
Fachzeitschrift | Asymptotic Analysis |
Jahrgang | 79 |
Ausgabenummer | 1-2 |
Publikationsstatus | Veröffentlicht - 2012 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224262 |
---|---|
WOS | 000308063400006 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- electro-magnetic theory, exterior boundary value problems, Maxwell's equations, polynomial and exponential decay of eigen-solutions, radiating solutions, variable coefficients