On Nonlinear Dirichlet-Neumann Algorithms for Jumping Nonlinearities
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We consider a quasilinear elliptic transmission problem where the nonlinearity changes discontinuously across two subdomains. By a reformulation of the problem via a Kirchhoff transformation, we first obtain linear problems on the subdomains together with nonlinear transmission conditions and then a nonlinear Steklov–Poincaré interface equation. We introduce a Dirichlet–Neumann iteration for this problem and prove convergence to a unique solution in one space dimension. Finally we present numerical results in two space dimensions suggesting that the algorithm can be applied successfully in more general cases.
Details
Originalsprache | Englisch |
---|---|
Titel | Domain Decomposition Methods in Science and Engineering XVI |
Herausgeber (Verlag) | Springer, Berlin [u. a.] |
Seiten | 489-496 |
Publikationsstatus | Veröffentlicht - 2007 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 67649327045 |
---|---|
ORCID | /0000-0003-1093-6374/work/147143092 |