On Huisman's conjectures about unramified real curves
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Let X Pn be an unramified real curve with X(R) ≠ 0. If n ≥ 3 is odd, Huisman [9] conjectured that X is an M-curve and that every branch of X(R) is a pseudo-line. If n ≥ 4 is even, he conjectures that X is a rational normal curve or a twisted form of such a curve. Recently, a family of unramified M-curves in P3 providing counterexamples to the first conjecture was constructed in [11]. In this note we construct another family of counterexamples that are not even M-curves. We remark that the second conjecture follows for generic curves of odd degree from the de Jonquières formula.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 545-549 |
Seitenumfang | 5 |
Fachzeitschrift | Advances in geometry |
Jahrgang | 21 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 1 Okt. 2021 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85117941762 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Real algebraic curve, M-curve, ramification