On generalized inverses of singular matrix pencils

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Linear time-invariant networks are modelled by linear differential- algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.

Details

OriginalspracheEnglisch
Seiten (von - bis)161-172
Seitenumfang12
FachzeitschriftInternational Journal of Applied Mathematics and Computer Science
Jahrgang21
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 März 2011
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-3347-0864/work/142255190

Schlagworte

Schlagwörter

  • Drazin inverse, Kronecker indices, Linear networks, Matrix pencils, Moore-Penrose inverse