On generalized inverses of singular matrix pencils
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Linear time-invariant networks are modelled by linear differential- algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 161-172 |
Seitenumfang | 12 |
Fachzeitschrift | International Journal of Applied Mathematics and Computer Science |
Jahrgang | 21 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 1 März 2011 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0002-3347-0864/work/142255190 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Drazin inverse, Kronecker indices, Linear networks, Matrix pencils, Moore-Penrose inverse