On deformations of hyperbolic varieties
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we study flat deformations of real subschemes of Pn, hyperbolic with respect to a fixed linear subspace, i.e., admit-ting a finite surjective and real fibered linear projection. We show that the subset of the corresponding Hilbert scheme consisting of such sub-schemes is closed and connected in the classical topology. Every smooth variety in this set lies in the interior of this set. Furthermore, we provide sufficient conditions for a hyperbolic subscheme to admit a flat deformation to a smooth hyperbolic subscheme. This leads to new examples of smooth hyperbolic varieties.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 593-612 |
Seitenumfang | 20 |
Fachzeitschrift | Moscow mathematical journal |
Jahrgang | 21 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 1 Juli 2021 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85109399836 |
---|
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Deformations, Hilbert scheme, Hyperbolic variety