On an extension of the first Korn inequality to incompatible tensor fields on domains of arbitrary dimensions
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
For a bounded domain Ω in RN with Lipschitz boundary Γ = ∂Ω and a relatively open and non-empty subset Γt of Γ, we prove the existence of a positive constant c such that inequality c||T ||L2(Ω,RN×N) ≤ ||sym T ||L2(Ω,RN×N) + || Curl T ||L2(Ω,RN×N(N−1)/2) holds for all tensor fields T ∈ H(Curl; Γt,Ω,RN×N), this is, for all T : Ω → RN×N which are square-integrable and possess a row-wise square-integrable rotation tensor field Curl T : Ω → RN×N(N−1)/2 and vanishing row-wise tangential trace on Γt. For compatible tensor fields T = ∇v with v ∈ H1(Ω,RN) having vanishing tangential Neumann trace on Γt the inequality reduces to a non-standard variant of the first Korn inequality since Curl T = 0, while for skew-symmetric tensor fields T the Poincaré inequality is recovered. If Γt = ∅, our estimate still holds at least for simply connected Ω and for all tensor fields T ∈ H(Curl; Ω,RN×N) which are L2(Ω,RN×N)-perpendicular to so(N), i.e., to all skew-symmetric constant tensors.
Details
Originalsprache | Englisch |
---|---|
Titel | Computational Methods in Applied Sciences |
Herausgeber (Verlag) | Springer Nature |
Seiten | 139-159 |
Seitenumfang | 21 |
Publikationsstatus | Veröffentlicht - 2014 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Computational Methods in Applied Sciences |
---|---|
Band | 34 |
ISSN | 1871-3033 |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224254 |
---|