On a class of degenerate abstract parabolic problems and applications to some eddy current models
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We present an abstract framework for parabolic type equations which possibly degenerate on certain spatial regions. The degeneracies are such that the equations under investigation may admit a type change ranging from parabolic to elliptic type problems. The approach is an adaptation of the concept of so-called evolutionary equations in Hilbert spaces and is eventually applied to a degenerate eddy current type model. The functional analytic setting requires quite minimal assumptions on the boundary and interface regularity. The degenerate eddy current model is justified as a limit model of non-degenerate hyperbolic models of Maxwell's equations.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 108847 |
| Seitenumfang | 45 |
| Fachzeitschrift | Journal of functional analysis |
| Jahrgang | 280 |
| Ausgabenummer | 7 |
| Frühes Online-Datum | Feb. 2021 |
| Publikationsstatus | Veröffentlicht - 1 Apr. 2021 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0003-4155-7297/work/145224259 |
|---|---|
| WOS | 000615710700010 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Eddy current model, Evo-systems, Evolutionary equations, Helmholtz decomposition, Maxwell's equations, Mixed type equations