On a canonical extension of Korn's first and Poincaré's inequalities to H(CURL)
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove a Korn-type inequality in H(Curl; Ω, ℝ 3×3) for tensor fields P mapping Ω to ℝ 3×3. More precisely, let Ω ⊂ ℝ 3 be a bounded domain with connected Lipschitz boundary ∂Ω. Then there exists a constant c > 0 such that, for all tensor fields P ∈ H(Curl; Ω, ℝ 3×3), i. e., all P ∈ H(Curl; Ω, ℝ 3×3) with vanishing tangential trace on ∂Ω. Here the rotation and tangential trace are defined row-wise. For compatible P of form P = ∇v, Curl P = 0, where v ∈ H 1(Ω, ℝ 3) is a vector field with components v n for which ∇v n are normal at ∂Ω, estimates (0. 1) is reduced to a non standard variant of Korn's first inequality:, For skew-symmetric P (with sym P = 0), estimates (0. 1) generates a nonstandard version of Poincaré's inequality. Therefore, the estimate is a generalization of two classical inequalities of Poincaré and Korn. Bibliography: 24 titles.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 721-727 |
Seitenumfang | 7 |
Fachzeitschrift | Journal of Mathematical Sciences (United States) |
Jahrgang | 185 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Sept. 2012 |
Peer-Review-Status | Ja |
Externe IDs
ORCID | /0000-0003-4155-7297/work/145224263 |
---|