Oligothiophene wires: Impact of torsional conformation on the electronic structure

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • D. A. Kislitsyn - , University of Oregon (Autor:in)
  • B. N. Taber - , University of Oregon (Autor:in)
  • C. F. Gervasi - , University of Oregon (Autor:in)
  • L. Zhang - , University of Massachusetts (Autor:in)
  • S. C.B. Mannsfeld - , Professur für Organische Bauelemente (cfaed) (Autor:in)
  • J. S. Prell - , University of Oregon (Autor:in)
  • A. L. Briseno - , University of Massachusetts (Autor:in)
  • G. V. Nazin - , University of Oregon (Autor:in)

Abstract

Charge transport in polymer- and oligomer-based semiconductor materials depends strongly on the structural ordering of the constituent molecules. Variations in molecular conformations influence the electronic structures of polymers and oligomers, and thus impact their charge-transport properties. In this study, we used Scanning Tunneling Microscopy and Spectroscopy (STM/STS) to investigate the electronic structures of different alkyl-substituted oligothiophenes displaying varied torsional conformations on the Au(111) surface. STM imaging showed that on Au(111), oligothiophenes self-assemble into chain-like structures, binding to each other via interdigitated alkyl ligands. The molecules adopted distinct planar conformations with alkyl ligands forming cis- or trans- mutual orientations. For each molecule, by using STS mapping, we identify a progression of particle-in-a-box-like states corresponding to the LUMO, LUMO+1 and LUMO+2 orbitals. Analysis of STS data revealed very similar unoccupied molecular orbital energies for different possible molecular conformations. By using density functional theory calculations, we show that the lack of variation in molecular orbital energies among the different oligothiophene conformers implies that the effect of the Au-oligothiophene interaction on molecular orbital energies is nearly identical for all studied torsional conformations. Our results suggest that cis-trans torsional disorder may not be a significant source of electronic disorder and charge carrier trapping in organic semiconductor devices based on oligothiophenes.

Details

OriginalspracheEnglisch
Seiten (von - bis)4842-4849
Seitenumfang8
FachzeitschriftPhysical Chemistry Chemical Physics
Jahrgang18
Ausgabenummer6
PublikationsstatusVeröffentlicht - 2016
Peer-Review-StatusJa