Ohmic contact interface engineering of fullerene-derived long-range ordered porous carbon-based anodes for durable sodium-ion capacitors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jundong Shao - , Huazhong University of Science and Technology (Autor:in)
  • Mingming Gao - , Huazhong University of Science and Technology (Autor:in)
  • Ying Huang - , Wuhan Institute of Technology (Autor:in)
  • Songlin Liu - , Shanghai Jiao Tong University (Autor:in)
  • Junke Li - , Huazhong University of Science and Technology (Autor:in)
  • Xiaosong Xiong - , Southeast University, Nanjing (Autor:in)
  • Antonio Gaetano Ricciardulli - , Université de Strasbourg (Autor:in)
  • Sheng Yang - , Shanghai Jiao Tong University (Autor:in)
  • Yubin Fu - , Center for Advancing Electronics Dresden (cfaed), Professur für Molekulare Funktionsmaterialien (cfaed), Southeast University, Nanjing (Autor:in)
  • Faxing Wang - , Southeast University, Nanjing (Autor:in)
  • Chun Fang - , Huazhong University of Science and Technology (Autor:in)
  • Panpan Zhang - , Huazhong University of Science and Technology (Autor:in)
  • Xing Lu - , Huazhong University of Science and Technology (Autor:in)

Abstract

The development of high-performance anode materials has become crucial for the advancement of sodium-ion capacitors (SICs). Long-range ordered porous carbon (LOPC), as a novel carbon material featuring three-dimensional interconnected sp2/sp3 hybridized carbon framework, is promising for high-density sodium-ion storage. Herein, we report an ohmic contact of LOPC embedded in exfoliated graphene (EG) (L-EG) with facilitated unimpeded electron flow from EG to LOPC, which ensures high electron/ion mobility through low-resistance interfacial region and high structural integrity. Pristine LOPC stores sodium ions in the Na+ intercalation/deintercalation process while suffers from severe structural collapse combined with limited ion mobility. Benefiting from the ohmic contact interface engineering, the designed L-EG electrode exhibits a high specific capacity of 120.0 mAh g−1 at 0.1 A g−1 and remarkable long cycle lifespan (113.7 % after 1000 cycles). When paired L-EG anode with activated carbon cathode, the assembled SICs deliver a maximum energy density of 82.1 Wh kg−1 and a maximum power density of 3498.0 W kg−1. These findings highlight the promising application potential of novel carbon materials in the field of sodium-ion energy storage devices.

Details

OriginalspracheEnglisch
Aufsatznummer171565
FachzeitschriftChemical engineering journal
Jahrgang526
PublikationsstatusVeröffentlicht - 15 Dez. 2025
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Cycling stability, High electron/ion mobility, Long-range ordered porous carbon, Ohmic contact, Sodium-ion capacitor