OctopuScheduler: On-Chip DNN Scheduling on the SpiNNaker2 Neuromorphic MPSoC

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

We present OctopuScheduler, the first generalized on-chip scheduling framework for the accelerated inference of non-spiking deep neural networks (DNNs) on the neuromorphic hardware platform SpiNNaker2. The goal of OctopuScheduler is to flexibly support a wide variety of state-of-the-art DNN architectures for different domains, moving from an application-specific custom implementation to a generally applicable framework, simplifying the access to the SpiNNaker2 platform. The on-chip scheduling approach allows to minimize communication latencies with the host, completely controlling the execution of layers for convolutional neural networks (CNNs) and transformer architectures within a single chip.OctopuScheduler as a scheduling framework for classical deep neural networks has the potential to unlock experimentation with large-scale hybrid deep and spiking neural network (SNN) architectures, event-based computing and neuromorphic modifications of classical state-of-the-art DNN architectures on the neuromorphic multi-processor system-on-chip (MPSoC) SpiNNaker2.

Details

OriginalspracheEnglisch
TitelIEEE Neuro-Inspired Computational Elements, NICE 2025 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seitenumfang10
ISBN (elektronisch)979-8-3315-0302-4
ISBN (Print)979-8-3315-0303-1
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - Juli 2025
Peer-Review-StatusJa

Konferenz

Titel12th Annual IEEE Neuro-Inspired Computational Elements
KurztitelNICE 2025
Veranstaltungsnummer12
Dauer25 - 28 März 2025
Webseite
OrtRuprecht-Karls-Universität Heidelberg
StadtHeidelberg
LandDeutschland

Schlagworte

Schlagwörter

  • Deep Learning, Embedded Software, Hardware Acceleration, Multicore Processing, Neuromorphics, Partitioning Algorithms, Scheduling Algorithms