OctopuScheduler: On-Chip DNN Scheduling on the SpiNNaker2 Neuromorphic MPSoC
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
We present OctopuScheduler, the first generalized on-chip scheduling framework for the accelerated inference of non-spiking deep neural networks (DNNs) on the neuromorphic hardware platform SpiNNaker2. The goal of OctopuScheduler is to flexibly support a wide variety of state-of-the-art DNN architectures for different domains, moving from an application-specific custom implementation to a generally applicable framework, simplifying the access to the SpiNNaker2 platform. The on-chip scheduling approach allows to minimize communication latencies with the host, completely controlling the execution of layers for convolutional neural networks (CNNs) and transformer architectures within a single chip.OctopuScheduler as a scheduling framework for classical deep neural networks has the potential to unlock experimentation with large-scale hybrid deep and spiking neural network (SNN) architectures, event-based computing and neuromorphic modifications of classical state-of-the-art DNN architectures on the neuromorphic multi-processor system-on-chip (MPSoC) SpiNNaker2.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | IEEE Neuro-Inspired Computational Elements, NICE 2025 - Proceedings |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seitenumfang | 10 |
| ISBN (elektronisch) | 979-8-3315-0302-4 |
| ISBN (Print) | 979-8-3315-0303-1 |
| Publikationsstatus | Elektronische Veröffentlichung vor Drucklegung - Juli 2025 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 12th Annual IEEE Neuro-Inspired Computational Elements |
|---|---|
| Kurztitel | NICE 2025 |
| Veranstaltungsnummer | 12 |
| Dauer | 25 - 28 März 2025 |
| Webseite | |
| Ort | Ruprecht-Karls-Universität Heidelberg |
| Stadt | Heidelberg |
| Land | Deutschland |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Deep Learning, Embedded Software, Hardware Acceleration, Multicore Processing, Neuromorphics, Partitioning Algorithms, Scheduling Algorithms