OCC: An Automated End-to-End Machine Learning Optimizing Compiler for Computing-In-Memory

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Memristive devices promise an alternative approach toward non-Von Neumann architectures, where specific computational tasks are performed within the memory devices. In the machine learning (ML) domain, crossbar arrays of resistive devices have shown great promise for ML inference, as they allow for hardware acceleration of matrix multiplications. But, to enable widespread adoption of these novel architectures, it is critical to have an automatic compilation flow as opposed to relying on a manual mapping of specific kernels on the crossbar arrays. We demonstrate the programmability of memristor-based accelerators using the new compiler design principle of multilevel rewriting, where a hierarchy of abstractions lowers programs level-by-level and perform code transformations at the most suitable abstraction. In particular, we develop a prototype compiler, which progressively lowers a mathematical notation for tensor operations arising in ML workloads, to fixed-function memristor-based hardware blocks.

Details

OriginalspracheEnglisch
Seiten (von - bis)1674 - 1686
Seitenumfang13
FachzeitschriftIEEE transactions on computer-aided design of integrated circuits and systems
Jahrgang41
Ausgabenummer6
Frühes Online-Datum2 Aug. 2021
PublikationsstatusVeröffentlicht - 1 Juni 2022
Peer-Review-StatusJa

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • Common Information Model (computing), Computer architecture, Computing-In-Memory, Hardware, MLIR, Machine Learning., Memristor, Memristors, Phase change materials, Runtime library, Tensors

Bibliotheksschlagworte