Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Crowdsourced Replication Initiative - (Autor:in)
  • Daniel Nüst - , Westfälische Wilhelms-Universität Münster (Autor:in)
  • Universität Bremen
  • University of Leeds
  • Universität Mannheim
  • Ludwig-Maximilians-Universität München (LMU)
  • Bremen International Graduate School of Social Sciences
  • Indiana University Bloomington
  • Deutsches Institut für Wirtschaftsforschung e.V. (DIW Berlin)
  • Max Planck Institute for Research On Collective Goods
  • Technische Universität Chemnitz
  • University of Cambridge
  • Johannes Gutenberg-Universität Mainz
  • Universität Heidelberg
  • Universitätsklinikum Frankfurt
  • Universität Konstanz
  • Otto-Friedrich-Universität Bamberg
  • Peace Research Institute Frankfurt
  • The London School of Economics and Political Science
  • GESIS – Leibniz-Institut für Sozialwissenschaften
  • Hertie School of Governance
  • Umeå University
  • University College London
  • University of Amsterdam
  • University of Texas Rio Grande Valley
  • Österreichische Akademie der Wissenschaften
  • Gesundheit Österreich GmbH
  • Universität Zürich
  • Universidad de Chile
  • Pontificia Universidad Católica de Chile
  • Loyola Marymount University
  • University of Edinburgh
  • Sciensano
  • Sciences Po
  • Freie Universität (FU) Berlin
  • KU Leuven
  • Europa-Universität Viadrina
  • Leibniz Institut fur Bildungsverlaufe (Lifbi)

Abstract

This study explores how researchers’ analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers’ expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team’s workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers’ results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.

Details

OriginalspracheEnglisch
Aufsatznummere2203150119
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang119
Ausgabenummer44
PublikationsstatusVeröffentlicht - 1 Nov. 2022
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 36306328
ORCID /0000-0002-0024-5046/work/144671595

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • analytical flexibility, immigration, many analysts, metascience, policy preferences, researcher degrees of freedom

Bibliotheksschlagworte