Objective monitoring of motor symptom severity and their progression in Parkinson's disease using a digital gait device

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tamara Raschka - , Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (Autor:in)
  • Jackrite To - , Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen, Universität Bonn (Autor:in)
  • Tom Hähnel - , Klinik und Poliklinik für Neurologie, Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (Autor:in)
  • Stefano Sapienza - , University of Luxembourg (Autor:in)
  • Alzhraa Ibrahim - , Universitätsklinikum der Friedrich-Alexander-Universität Erlangen-Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Enrico Glaab - , University of Luxembourg (Autor:in)
  • Heiko Gaßner - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Ralph Steidl - , Portabiles HealthCare Technologies GmbH (Autor:in)
  • Jürgen Winkler - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Jean-Christophe Corvol - , Hôpital de la Salpêtrière, Sorbonne Université (Autor:in)
  • Jochen Klucken - , University of Luxembourg (Autor:in)
  • Holger Fröhlich - , Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen, Universität Bonn (Autor:in)

Abstract

Digital technologies for monitoring motor symptoms of Parkinson's Disease (PD) underwent a strong evolution during the past years. Although it has been shown for several devices that derived digital gait features can reliably discriminate between healthy controls and people with PD, the specific gait tasks best suited for monitoring motor symptoms and especially their progression, remain unclear. Furthermore, the potential benefit as endpoint in a clinical trial context has not been investigated so far. In this study we employed a digital gait device manufactured by Portabiles HCT, which has been used by 339 patients within the LuxPark cohort (n = 161, Luxembourg) as well as within routine clinical care visits at the University Medical Center Erlangen (n = 178, Erlangen, Germany). Linear (mixed) models were used to assess the association of task-specific digital gait features with disease progression and motor symptom severity measured by several clinical scores. Furthermore, we employed machine learning to evaluate whether digital gait assessments were prognostic for patient-level motor symptom progression. Overall, digital gait features derived from Portabiles digital gait device were found to effectively monitor motor symptoms and their longitudinal progression. At the same time the prognostic performance of digital gait features was limited. However, we could show a strong reduction in required sample size, if digital gait features were employed as surrogates for traditional endpoints in a clinical trial context. Thus, Portabiles digital gait device provides an effective way to objectively monitor motor symptoms and their progression in PD. Furthermore, the digital gait device bears strong potential as an alternative and easily assessable endpoint predictor in a clinical trial context.

Details

OriginalspracheEnglisch
Aufsatznummer25541
FachzeitschriftScientific reports
Jahrgang15
Ausgabenummer1
PublikationsstatusVeröffentlicht - 15 Juli 2025
Peer-Review-StatusJa

Externe IDs

Scopus 105010594478

Schlagworte

Forschungsprofillinien der TU Dresden

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Humans, Parkinson Disease/physiopathology, Male, Female, Disease Progression, Aged, Middle Aged, Gait/physiology, Severity of Illness Index, Machine Learning