Numerical simulation of an atmospheric pressure RF-driven plasma needle and heat transfer to adjacent human skin using COMSOL
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Plasma medicine is an emerging field where plasma physics is used for therapeutical applications. Temperature is an important factor to take into account with respect to the applications of plasma to biological systems. During the treatment, the tissue temperature could increase to critical values. In this work, a model is presented, which is capable of predicting the skin temperature during a treatment with a radio frequency driven plasma needle. The main gas was helium. To achieve this, a discharge model was coupled to a heat transfer and fluid flow model. The results provide maximum application times for different power depositions in order to avoid reaching critical skin temperatures.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 029508 |
Fachzeitschrift | Biointerphases |
Jahrgang | 10 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 Juni 2015 |
Peer-Review-Status | Ja |
Externe IDs
PubMed | 25850416 |
---|