Numerical Approaches for Investigating Quasiconvexity in the Context of Morrey’s Conjecture
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function W. We will demonstrate these methods using the planar isotropic rank-one convex function Wmagic+(F)=λmaxλmin-logλmaxλmin+logdetF=λmaxλmin+2logλmin,where λ max≥ λ min are the singular values of F, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies W: GL +(2) → R with an additive volumetric-isochoric split of the form W(F)=Wiso(F)+Wvol(detF)=W~iso(FdetF)+Wvol(detF)with a concave volumetric part. This example is therefore of particular interest with regard to Morrey’s open question whether or not rank-one convexity implies quasiconvexity in the planar case.
Details
| Originalsprache | Englisch |
|---|---|
| Aufsatznummer | 77 |
| Seitenumfang | 41 |
| Fachzeitschrift | Journal of Nonlinear Science |
| Jahrgang | 32 |
| Ausgabenummer | 6 |
| Publikationsstatus | Veröffentlicht - 2 Sept. 2022 |
| Peer-Review-Status | Ja |
Externe IDs
| ORCID | /0000-0003-1093-6374/work/146166887 |
|---|---|
| Scopus | 85137586555 |