Nonlocal complement value problem for a global in time parabolic equation
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The overreaching goal of this paper is to investigate the existence and uniqueness of weak solution of a semilinear parabolic equation with double nonlocality in space and in time variables that naturally arises while modeling a biological nano-sensor in the chaotic dynamics of a polymer chain. In fact, the problem under consideration involves a symmetric integrodifferential operator of Lévy type and a term called the interaction potential, that depends on the time-integral of the solution over the entire interval of solving the problem. Owing to the Galerkin approximation, the existence and uniqueness of a weak solution of the nonlocal complement value problem is proven for small time under fair conditions on the interaction potential.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 767-789 |
Seitenumfang | 23 |
Fachzeitschrift | Journal of Elliptic and Parabolic Equations |
Jahrgang | 8 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Dez. 2022 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Lévy operators, Nonlocal operators, Parabolic equations: IVP, Weak solutions