Non-invasive computation of aortic pressure maps: A phantom-based study of two approaches

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Michael Delles - , Karlsruher Institut für Technologie (Autor:in)
  • Sebastian Schalck - , Karlsruher Institut für Technologie (Autor:in)
  • Yves Chassein - , Karlsruher Institut für Technologie (Autor:in)
  • Tobias Müller - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Fabian Rengier - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg (Autor:in)
  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden, Karlsruher Institut für Technologie (Autor:in)
  • Hendrik Von Tengg-Kobligk - , Deutsches Krebsforschungszentrum (DKFZ), Universität Heidelberg, Universität Bern (Autor:in)
  • Hans Ulrich Kauczor - , Universität Heidelberg (Autor:in)
  • Rüdiger Dillmann - , Karlsruher Institut für Technologie (Autor:in)
  • Roland Unterhinninghofen - , Karlsruher Institut für Technologie (Autor:in)

Abstract

Patient-specific blood pressure values in the human aorta are an important parameter in the management of cardiovascular diseases. A direct measurement of these values is only possible by invasive catheterization at a limited number of measurement sites. To overcome these drawbacks, two non-invasive approaches of computing patient-specific relative aortic blood pressure maps throughout the entire aortic vessel volume are investigated by our group. The first approach uses computations from complete time-resolved, three-dimensional flow velocity fields acquired by phasecontrast magnetic resonance imaging (PC-MRI), whereas the second approach relies on computational fluid dynamics (CFD) simulations with ultrasound-based boundary conditions. A detailed evaluation of these computational methods under realistic conditions is necessary in order to investigate their overall robustness and accuracy as well as their sensitivity to certain algorithmic parameters. We present a comparative study of the two blood pressure computation methods in an experimental phantom setup, which mimics a simplified thoracic aorta. The comparative analysis includes the investigation of the impact of algorithmic parameters on the MRI-based blood pressure computation and the impact of extracting pressure maps in a voxel grid from the CFD simulations. Overall, a very good agreement between the results of the two computational approaches can be observed despite the fact that both methods used completely separate measurements as input data. Therefore, the comparative study of the presented work indicates that both non-invasive pressure computation methods show an excellent robustness and accuracy and can therefore be used for research purposes in the management of cardiovascular diseases.

Details

OriginalspracheEnglisch
TitelMedical Imaging 2014
Herausgeber (Verlag)SPIE - The international society for optics and photonics, Bellingham
ISBN (Print)9780819498311
PublikationsstatusVeröffentlicht - 2014
Peer-Review-StatusJa

Publikationsreihe

ReiheProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Band9038
ISSN1605-7422

Konferenz

TitelMedical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging
Dauer16 - 18 Februar 2014
StadtSan Diego, CA
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-4590-1908/work/163294173

Schlagworte

Schlagwörter

  • Blood flow, Blood pressure computation, Cardiovascular, Computational fluid dynamics, Hemodynamics, Magnetic resonance imaging, Phase-contrast, Ultrasound, Velocity-encoded imaging