Nonclassical Exciton Diffusion in Monolayer WSe2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Koloman Wagner - , Universität Regensburg (Autor:in)
  • Jonas Zipfel - , Universität Regensburg, Lawrence Berkeley National Laboratory (Autor:in)
  • Roberto Rosati - , Philipps-Universität Marburg (Autor:in)
  • Edith Wietek - , Universität Regensburg (Autor:in)
  • Jonas D. Ziegler - , Universität Regensburg (Autor:in)
  • Samuel Brem - , Philipps-Universität Marburg (Autor:in)
  • Raül Perea-Causín - , Chalmers University of Technology (Autor:in)
  • Takashi Taniguchi - , National Institute for Materials Science Tsukuba (Autor:in)
  • Kenji Watanabe - , National Institute for Materials Science Tsukuba (Autor:in)
  • Mikhail M. Glazov - , RAS - Ioffe Physico Technical Institute (Autor:in)
  • Ermin Malic - , Philipps-Universität Marburg, Chalmers University of Technology (Autor:in)
  • Alexey Chernikov - , Professur für Ultraschnelle Mikroskopie und Photonik (ct.qmat), Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Universität Regensburg (Autor:in)

Abstract

We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diffusivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semiphenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically thin van der Waals materials and their heterostructures.

Details

OriginalspracheEnglisch
Aufsatznummer076801
FachzeitschriftPhysical review letters
Jahrgang127
Ausgabenummer7
PublikationsstatusVeröffentlicht - 13 Aug. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 34459627
ORCID /0000-0002-9213-2777/work/196666182

Schlagworte

ASJC Scopus Sachgebiete