Noise-induced homeostasis in memristor-based neuromorphic systems

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • E. Salvador - , Autonomous University of Barcelona (Autor:in)
  • Rosana Rodriguez Martinez - , Autonomous University of Barcelona (Autor:in)
  • E. Miranda - , Autonomous University of Barcelona (Autor:in)
  • J. Martin-Martinez - , Autonomous University of Barcelona (Autor:in)
  • Antonio Rubio - , UPC Universitat Politècnica de Catalunya (Barcelona Tech) (Autor:in)
  • A. Crespo-Yepes - , Autonomous University of Barcelona (Autor:in)
  • V. Ntinas - , Professur für Grundlagen der Elektronik, UPC Universitat Politècnica de Catalunya (Barcelona Tech) (Autor:in)
  • G. Ch Sirakoulis - , Democritus University of Thrace (Autor:in)
  • M. Nafria - , Autonomous University of Barcelona (Autor:in)

Abstract

In this work, it is experimentally demonstrated that noise can be used to emulate the biological homeostatic neuron property in memristor-based neuromorphic systems. The addition of an external noise to the bias allows regulating the memristor performance when used as an artificial neuron, controlling the firing process through the modulation of the memristor threshold voltages. Experimental results have been correctly addressed using the Dynamic Memdiode Model (DMM) for memristors in the framework of SPICE simulation.

Details

OriginalspracheEnglisch
Seiten (von - bis)1
Seitenumfang1
FachzeitschriftIEEE electron device letters
Jahrgang45
Ausgabenummer8
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Externe IDs

Mendeley f52f5300-565a-37a3-9509-a0ccb9c9439f
ORCID /0000-0002-2367-5567/work/168720269

Schlagworte

Schlagwörter

  • homeostasis, Homeostasis, Memristor, Memristors, Neuromorphics, Neurons, Noise, resistive switching, RRAM, SPICE, spike neural networks, Standards, stochastic resonance, Threshold voltage