Nitrogen addition increases mass loss of gymnosperm but not of angiosperm deadwood without changing microbial communities

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Friederike Roy - , Professur für Umweltbiotechnologie (Autor:in)
  • Orkhan Ibayev - , Technische Universität Dresden (Autor:in)
  • Tobias Arnstadt - , Professur für Umweltbiotechnologie (Autor:in)
  • Claus Bässler - , Johann Wolfgang Goethe-Universität Frankfurt am Main, Bavarian Forest National Park (Autor:in)
  • Werner Borken - , Universität Bayreuth (Autor:in)
  • Christina Groß - , Universität Bayreuth (Autor:in)
  • Björn Hoppe - , Julius Kühn Institute - Federal Research Centre for Cultivated Plants (Autor:in)
  • Shakhawat Hossen - , Hochschule für angewandte Wissenschaften Coburg (Autor:in)
  • Tiemo Kahl - , UNESCO-Biosphärenreservat Thüringer Wald (Autor:in)
  • Julia Moll - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Matthias Noll - , Hochschule für angewandte Wissenschaften Coburg (Autor:in)
  • Witoon Purahong - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Jasper Schreiber - , Johann Wolfgang Goethe-Universität Frankfurt am Main (Autor:in)
  • Wolfgang W. Weisser - , Technische Universität München (Autor:in)
  • Martin Hofrichter - , Professur für Umweltbiotechnologie (Autor:in)
  • Harald Kellner - , Professur für Umweltbiotechnologie (Autor:in)

Abstract

Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha−1 yr−1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.

Details

OriginalspracheEnglisch
Aufsatznummer165868
Seitenumfang16
FachzeitschriftScience of the total environment
Jahrgang900 (2023)
PublikationsstatusVeröffentlicht - 28 Juli 2023
Peer-Review-StatusJa

Externe IDs

PubMed 37516186

Schlagworte

Schlagwörter

  • Anthropogenic nitrogen, Bacterial and fungal community, Carbon cycle, Lignocellulolytic enzymes, Respiration, White-rot fungi

Bibliotheksschlagworte