Next Generation Memristor Reservoir Computing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The nonlinear transformation used in reservoir computing can be effectively replaced by nonlinear vector autoregression (NVAR) for data prediction. In such a method, also known as next generation reservoir computing (NGRC), the input signal consists of a linear part, including several previous data points, and their nonlinear combinations. Here we show that the application of this method to a network with memristive weights (memristors) can be used to predict signals, depending on the nature of the nonlinear functions and the number of memristors. The network allows an accurate prediction of chaotic time series of Mackey-Glass and Duffing oscillators.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2024 - Proceedings |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 912-917 |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 979-8-3503-7800-9 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 3rd IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering |
|---|---|
| Kurztitel | MetroXRAINE 2024 |
| Veranstaltungsnummer | 3 |
| Dauer | 21 - 23 Oktober 2024 |
| Webseite | |
| Ort | The Alban Arena |
| Stadt | St Albans |
| Land | Großbritannien/Vereinigtes Königreich |
Externe IDs
| ORCID | /0000-0001-7436-0103/work/177867489 |
|---|---|
| ORCID | /0000-0002-1236-1300/work/177868586 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Machine Learning, Memristor, Nonlinear Vector Autoregression, Reservoir Computing