Next Generation Memristor Reservoir Computing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • K. Nikiruy - , Technische Universitat Ilmenau (Autor:in)
  • T. Ivanov - , Technische Universitat Ilmenau (Autor:in)
  • M. Ziegler - , Technische Universitat Ilmenau (Autor:in)
  • D. Rossetti - , Politecnico di Torino (Autor:in)
  • F. Corinto - , Politecnico di Torino (Autor:in)
  • A. Ascoli - , Politecnico di Torino (Autor:in)
  • R. Tetzlaff - , Professur für Grundlagen der Elektronik (Autor:in)
  • A. S. Demirkol - , Professur für Grundlagen der Elektronik (Autor:in)
  • N. Schmitt - , Technische Universität Dresden (Autor:in)

Abstract

The nonlinear transformation used in reservoir computing can be effectively replaced by nonlinear vector autoregression (NVAR) for data prediction. In such a method, also known as next generation reservoir computing (NGRC), the input signal consists of a linear part, including several previous data points, and their nonlinear combinations. Here we show that the application of this method to a network with memristive weights (memristors) can be used to predict signals, depending on the nature of the nonlinear functions and the number of memristors. The network allows an accurate prediction of chaotic time series of Mackey-Glass and Duffing oscillators.

Details

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering, MetroXRAINE 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten912-917
Seitenumfang6
ISBN (elektronisch)979-8-3503-7800-9
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel3rd IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering
KurztitelMetroXRAINE 2024
Veranstaltungsnummer3
Dauer21 - 23 Oktober 2024
Webseite
OrtThe Alban Arena
StadtSt Albans
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

ORCID /0000-0001-7436-0103/work/177867489
ORCID /0000-0002-1236-1300/work/177868586

Schlagworte

Schlagwörter

  • Machine Learning, Memristor, Nonlinear Vector Autoregression, Reservoir Computing