New CNN based algorithms for the full penetration hole extraction in laser welding processes: Experimental results.

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Leonardo Nicolosi - , Technische Universität Dresden (Autor:in)
  • Ronald Tetzlaff - , Professur für Grundlagen der Elektrotechnik (GE) (Autor:in)
  • Felix Abt - , Forschungsgesellschaft für Strahlwerkzeuge Mbh (FGSW) (Autor:in)
  • Andreas Blug - , Fraunhofer-Institut für Physikalische Messtechnik (Autor:in)
  • Daniel Carl - , Fraunhofer-Institut für Physikalische Messtechnik (Autor:in)
  • Heinrich Höfler - , Fraunhofer-Institut für Physikalische Messtechnik (Autor:in)

Abstract

In this paper the results obtained by the use of new CNN based visual algorithms for the control of welding processes are described. The growing number of laser welding applications from automobile production to micro mechanics requires fast systems to create closed loop control for error prevention and correction. Nowadays the image processing frame rates of conventional architectures are not sufficient to control high speed laser welding processes due to the fast fluctuation of the full penetration hole. This paper focuses the attention on new strategies obtained by the use of the Eye-RIS system v1.2 which includes a pixel parallel cellular neural network (CNN) based architecture called Q-Eye. In particular, new algorithms for the full penetration hole detection with frame rates up to 24 kHz will be presented. Finally, the results obtained performing real time control of welding processes by the use of these algorithms will be discussed.

Details

OriginalspracheEnglisch
TitelProceedings of 2009 International Joint Conference on Neural Networks
Seiten2256-2263
Seitenumfang8
PublikationsstatusVeröffentlicht - 2009
Peer-Review-StatusJa

Externe IDs

Scopus 70449412539
ORCID /0000-0001-7436-0103/work/142240299

Schlagworte

Schlagwörter

  • Cellular neural networks, closed loop systems, feature extraction, feedback, system application and experience., laser welding