Neural Mutual Information Estimation for Channel Coding: State-of-The-Art Estimators, Analysis, and Performance Comparison

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Rick Fritschek - , Freie Universität (FU) Berlin (Autor:in)
  • Rafael F. Schaefer - , Technische Universität Berlin (Autor:in)
  • Gerhard Wunder - , Freie Universität (FU) Berlin (Autor:in)

Abstract

Deep learning based physical layer design, i.e., using dense neural networks as encoders and decoders, has received considerable interest recently. However, while such an approach is naturally training data-driven, actions of the wireless channel are mimicked using standard channel models, which only partially reflect the physical ground truth. Very recently, neural network based mutual information (MI) estimators have been proposed that directly extract channel actions from the input-output measurements and feed these outputs into the channel encoder. This is a promising direction as such a new design paradigm is fully adaptive and training data-based. This paper implements further recent improvements of such MI estimators, analyzes theoretically their suitability for the channel coding problem, and compares their performance. To this end, a new MI estimator using a "reverse Jensen" approach is proposed.

Details

OriginalspracheEnglisch
Titel2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)978-1-7281-5478-7
PublikationsstatusVeröffentlicht - Mai 2020
Peer-Review-StatusJa
Extern publiziertJa

Publikationsreihe

ReiheIEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
ISSN1948-3244

Konferenz

Titel21st IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
Dauer26 - 29 Mai 2020
StadtAtlanta
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0002-1702-9075/work/165878287