Neural Architecture Search for Low-Precision Neural Networks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
In our work, we extend the search space of the differentiable Neural Architecture Search (NAS) by adding bitwidth. The extended NAS algorithm is performed directly with low-precision from scratch without the proxy of full-precision. With our low-precision NAS, we can search for low- and mixed-precision network architectures of Convolutional Neural Networks (CNNs) under specific constraints, such as power consumption. Experiments on the ImageNet dataset demonstrate the effectiveness of our method, where the searched models achieve better accuracy (up to 1.2 percentage point) with smaller model sizes (up to 27 % smaller) and lower power consumption (up to 27 % lower) compared to the state-of-art methods. In our low-precision NAS, sharing of convolution is developed to speed up training and decrease memory consumption. Compared to the FBNet-V2 implementation, our solution reduces training time and memory cost by nearly 3 × and 2 ×, respectively. Furthermore, we adapt the NAS to train the entire supernet instead of a subnet in each iteration to address the insufficient training issue. Besides, we also propose the forward-and-backward scaling method, which addresses the issue by eliminating the vanishing of the forward activations and backward gradients.
Details
Originalsprache | Englisch |
---|---|
Titel | Artificial Neural Networks and Machine Learning - ICANN 2022 |
Redakteure/-innen | Elias Pimenidis, Mehmet Aydin, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas |
Herausgeber (Verlag) | Springer Science and Business Media B.V. |
Seiten | 743-755 |
Seitenumfang | 13 |
ISBN (elektronisch) | 978-3-031-15937-4 |
ISBN (Print) | 978-3-031-15936-7 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Band | 13532 LNCS |
ISSN | 0302-9743 |
Konferenz
Titel | 31st International Conference on Artificial Neural Networks, ICANN 2022 |
---|---|
Dauer | 6 - 9 September 2022 |
Stadt | Bristol |
Land | Großbritannien/Vereinigtes Königreich |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Convolutional Neural Network, Low- and mixed-precision, Neural Architecture Search