Network-Wide Estimation of Average Daily Bicycle Traffic Based on Crowdsourced GPS Data and Permanent Counters
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
This paper attempts to predict average daily bicycle volumes on a nationwide level using crowdsourced GPS data from the CITYCYCLING campaign in Germany. The data source was 514 permanent counting sites across the country as well as the campaign-generated GPS bicycle volumes of about 300,000 participants and 7.5 million tracks from a smartphone app. For model building, Gradient Boosting Regression and Support Vector Regression were selected. The results show a medium to high model fit for the prediction of bicycle volumes at sites with permanent counters. To illustrate this, the models are applied to the road network of a district of the city of Dresden, Germany.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Transport Transitions: Advancing Sustainable and Inclusive Mobility |
| Herausgeber (Verlag) | Springer |
| Seiten | 260-266 |
| Seitenumfang | 7 |
| ISBN (elektronisch) | 978-3-031-85578-8 |
| ISBN (Print) | 978-3-031-85577-1 |
| Publikationsstatus | Veröffentlicht - 2025 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Lecture Notes in Mobility |
|---|---|
| Band | Part F147 |
| ISSN | 2196-5544 |
Externe IDs
| ORCID | /0000-0002-5497-3698/work/183165391 |
|---|---|
| ORCID | /0000-0003-0027-539X/work/183165416 |
| ORCID | /0000-0002-1582-6089/work/183166131 |
| ORCID | /0009-0004-6373-632X/work/183166135 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- AADB, Crowdsourced Data, GPS Data