Network Satisfaction Problems Solved by k-Consistency

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

We show that the problem of deciding for a given finite relation algebra A whether the network satisfaction problem for A can be solved by the k-consistency procedure, for some k ∈ N, is undecidable. For the important class of finite relation algebras A with a normal representation, however, the decidability of this problem remains open. We show that if A is symmetric and has a flexible atom, then the question whether NSP(A) can be solved by k-consistency, for some k ∈ N, is decidable (even in polynomial time in the number of atoms of A). This result follows from a more general sufficient condition for the correctness of the k-consistency procedure for finite symmetric relation algebras. In our proof we make use of a result of Alexandr Kazda about finite binary conservative structures.

Details

OriginalspracheEnglisch
Titel50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
Redakteure/-innenKousha Etessami, Uriel Feige, Gabriele Puppis
Seiten116:1-116:20
Seitenumfang20
ISBN (elektronisch)9783959772785
PublikationsstatusVeröffentlicht - Juli 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheLeibniz international proceedings in informatics : LIPIcs
Band261
ISSN1868-8969

Externe IDs

Scopus 85167338316
ORCID /0000-0001-8228-3611/work/152544381

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Computational Complexity, Constraint Satisfaction, Datalog, k-Consistency, Network Satisfaction, Qualitative Reasoning, Relation Algebras