Network Satisfaction for Symmetric Relation Algebras with a Flexible Atom.
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras A. We provide a complete classification for the case that A is symmetric and has a flexible atom; the problem is in this case NP-complete or in P. If a finite integral relation algebra has a flexible atom, then it has a normal representation B. We can then study the computational complexity of the network satisfaction problem of A using the universal-algebraic approach, via an analysis of the polymorphisms of B. We also use a Ramsey-type result of Nešetřil and Rödl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
| Seiten | 6218-6226 |
| Seitenumfang | 9 |
| ISBN (elektronisch) | 9781713835974 |
| Publikationsstatus | Veröffentlicht - 2021 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85110955943 |
|---|---|
| ORCID | /0000-0001-8228-3611/work/142241132 |
| Mendeley | 742da98f-c01f-3cfb-bfd7-3bc53ddbd505 |