NEMESYS - A showcase of data oriented near memory graph processing

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

NeMeSys is a NUMA-aware graph pattern processing engine, which uses the Near Memory Processing paradigm to allow for high scalability. With modern server systems incorporating an increasing amount of main memory, we can store graphs and compute analytical graph algorithms like graph pattern matching completely in-memory. Our system blends state-of-the-art approaches from the transactional database world together with graph processing principles. We demonstrate, that graph pattern processing - standalone and workloads - can be controlled by leveraging different partitioning strategies, applying Bloom filter-based messaging optimization and, given performance constraints, can save energy by applying frequency scaling of CPU cores.

Details

OriginalspracheEnglisch
TitelSIGMOD '19: Proceedings of the 2019 International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery (ACM), New York
Seiten1945-1948
Seitenumfang4
ISBN (Print)978-1-4503-5643-5
PublikationsstatusVeröffentlicht - 25 Juni 2019
Peer-Review-StatusJa

Publikationsreihe

ReiheMOD: International Conference on Management of Data (SIGMOD)

Konferenz

Titel2019 International Conference on Management of Data, SIGMOD 2019
Dauer30 Juni - 5 Juli 2019
StadtAmsterdam
LandNiederlande

Externe IDs

dblp conf/sigmod/KrauseKHL19
ORCID /0000-0001-8107-2775/work/142253583

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Bloom filter, Graph, In-memory, NUMA