NEMESYS - A showcase of data oriented near memory graph processing
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
NeMeSys is a NUMA-aware graph pattern processing engine, which uses the Near Memory Processing paradigm to allow for high scalability. With modern server systems incorporating an increasing amount of main memory, we can store graphs and compute analytical graph algorithms like graph pattern matching completely in-memory. Our system blends state-of-the-art approaches from the transactional database world together with graph processing principles. We demonstrate, that graph pattern processing - standalone and workloads - can be controlled by leveraging different partitioning strategies, applying Bloom filter-based messaging optimization and, given performance constraints, can save energy by applying frequency scaling of CPU cores.
Details
Originalsprache | Englisch |
---|---|
Titel | SIGMOD '19: Proceedings of the 2019 International Conference on Management of Data |
Herausgeber (Verlag) | Association for Computing Machinery (ACM), New York |
Seiten | 1945-1948 |
Seitenumfang | 4 |
ISBN (Print) | 978-1-4503-5643-5 |
Publikationsstatus | Veröffentlicht - 25 Juni 2019 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | MOD: International Conference on Management of Data (SIGMOD) |
---|
Konferenz
Titel | 2019 International Conference on Management of Data, SIGMOD 2019 |
---|---|
Dauer | 30 Juni - 5 Juli 2019 |
Stadt | Amsterdam |
Land | Niederlande |
Externe IDs
dblp | conf/sigmod/KrauseKHL19 |
---|---|
ORCID | /0000-0001-8107-2775/work/142253583 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bloom filter, Graph, In-memory, NUMA