Neighboring nonmetal site as an intermediate modulator switching CO2 electroreduction pathway toward multicarbons

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Li Li - , University of Science and Technology of China (USTC), Max-Planck-Institut für Mikrostrukturphysik (Autor:in)
  • Ying Zhou - , University of Science and Technology of China (USTC) (Autor:in)
  • Chaofan Wan - , University of Science and Technology of China (USTC) (Autor:in)
  • Xiaodong Li - , Max-Planck-Institut für Mikrostrukturphysik (Autor:in)
  • Panzhe Qiao - , CAS - Shanghai Advanced Research Institute (Autor:in)
  • Shibo Xi - , Agency for Science, Technology and Research, Singapore (Autor:in)
  • Yan Fang - , Shanghai Jiao Tong University (Autor:in)
  • Xianbiao Fu - , Technical University of Denmark (Autor:in)
  • Jiexin Zhu - , The University of Auckland (Autor:in)
  • Shumin Wang - , University of Science and Technology of China (USTC) (Autor:in)
  • Xia Wang - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Chengbin Xu - , University of Science and Technology of China (USTC) (Autor:in)
  • Zechao Zhuang - , Columbia University (Autor:in)
  • Ming Zuo - , University of Science and Technology of China (USTC) (Autor:in)
  • Minghui Fan - , University of Science and Technology of China (USTC) (Autor:in)
  • Zheng Jiang - , CAS - Shanghai Advanced Research Institute (Autor:in)
  • Wenhua Zhang - , University of Science and Technology of China (USTC) (Autor:in)
  • Xinliang Feng - , Center for Advancing Electronics Dresden (cfaed), Professur für Molekulare Funktionsmaterialien (cfaed), Max-Planck-Institut für Mikrostrukturphysik (Autor:in)
  • Yongfu Sun - , University of Science and Technology of China (USTC) (Autor:in)
  • Jinlong Yang - , University of Science and Technology of China (USTC) (Autor:in)
  • Yi Xie - , University of Science and Technology of China (USTC) (Autor:in)

Abstract

Selective CO2 electroreduction toward multicarbons (C2+) is hampered by the competing pathways at ampere-level current densities. Here, theoretical calculations reveal that the binding strength and protonation of the ∗CO intermediate are a pair of key descriptors in governing the selectivity-determining bifurcation pathway on copper (Cu) catalyst. Hence, we propose an intermediate-modulator strategy with a nonmetallic phosphorus (P)-modified Cu (P-Cu) hetero-site catalyst for ideal C2+ formation. The P site enhances charge accumulation at the neighboring Cu site, which strengthens ∗CO adsorption and active ∗H supply from H2O activation, favoring a rich-∗H-assisted-protonation (RHP) pathway toward ∗CHO formation. Subsequently, the lowest-energy-barrier ∗CO-∗CHO coupling pathway switches the predominant reaction pathway away from undesired CO and H2 to higher-value ethylene and ethanol. We report a C2+ partial current density of 1.05 A cm−2 and a Faradaic efficiency of 87.7%. Utilizing cheaper nonmetallic elements, this catalyst design principle outperforms reported outcomes with precious metal dopants.

Details

OriginalspracheEnglisch
Aufsatznummer101926
FachzeitschriftJoule
Jahrgang9
Ausgabenummer5
PublikationsstatusVeröffentlicht - 21 Mai 2025
Peer-Review-StatusJa

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • ampere-level current densities, CO electroreduction, high selectivity, multicarbons, nonmetal site, switchable reaction pathway