Nanolithographic Fabrication Technologies for Network-Based Biocomputation Devices

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Christoph R. Meinecke - , Technische Universität Chemnitz, Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Georg Heldt - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Thomas Blaudeck - , Technische Universität Chemnitz, Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Frida W. Lindberg - , Lund University (Autor:in)
  • Falco C.M.J.M. van Delft - , Molecular Sense Ltd (Autor:in)
  • Mohammad Ashikur Rahman - , Linnaeus University (Autor:in)
  • Aseem Salhotra - , Linnaeus University (Autor:in)
  • Alf Månsson - , Linnaeus University (Autor:in)
  • Heiner Linke - , Lund University (Autor:in)
  • Till Korten - , Core Facility Bedarfsorientierte Intelligente Mikroskopie, Professur für BioNano-Werkzeuge, Exzellenzcluster PoL: Physik des Lebens (Autor:in)
  • Stefan Diez - , Professur für BioNano-Werkzeuge, Exzellenzcluster PoL: Physik des Lebens, Max Planck Institute of Molecular Cell Biology and Genetics (Autor:in)
  • Danny Reuter - , Technische Universität Chemnitz, Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Stefan E. Schulz - , Technische Universität Chemnitz, Fraunhofer Institute for Electronic Nano Systems (Autor:in)

Abstract

Network-based biocomputation (NBC) relies on accurate guiding of biological agents through nanofabricated channels produced by lithographic patterning techniques. Here, we report on the large-scale, wafer-level fabrication of optimized microfluidic channel networks (NBC networks) using electron-beam lithography as the central method. To confirm the functionality of these NBC networks, we solve an instance of a classical non-deterministic-polynomial-time complete (“NP-complete”) problem, the subset-sum problem. The propagation of cytoskeletal filaments, e.g., molecular motor-propelled microtubules or actin filaments, relies on a combination of physical and chemical guiding along the channels of an NBC network. Therefore, the nanofabricated channels have to fulfill specific requirements with respect to the biochemical treatment as well as the geometrical confienement, with walls surrounding the floors where functional molecular motors attach. We show how the material stack used for the NBC network can be optimized so that the motor-proteins attach themselves in functional form only to the floor of the channels. Further optimizations in the nanolithographic fabrication processes greatly improve the smoothness of the channel walls and floors, while optimizations in motor-protein expression and purification improve the activity of the motor proteins, and therefore, the motility of the filaments. Together, these optimizations provide us with the opportunity to increase the reliability of our NBC devices. In the future, we expect that these nanolithographic fabrication technologies will enable production of large-scale NBC networks intended to solve substantially larger combinatorial problems that are currently outside the capabilities of conventional software-based solvers.

Details

OriginalspracheEnglisch
Aufsatznummer1046
Seitenumfang16
FachzeitschriftMaterials
Jahrgang16
Ausgabenummer3
PublikationsstatusVeröffentlicht - Feb. 2023
Peer-Review-StatusJa

Externe IDs

WOS 000929577200001
ORCID /0000-0002-0750-8515/work/142235624

Schlagworte

Schlagwörter

  • electron-beam lithography, microfluidics, molecular motors, nanotechnology, network-based biocomputation, Molecular motors, Electron-beam lithography, Network-based biocomputation, Microfluidics, Nanotechnology

Bibliotheksschlagworte