Multi-template training for image processing with cellular neural networks

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

  • R. Schönmeyer - , Universitätsklinikum Frankfurt (Autor:in)
  • D. Feiden - , Universitätsklinikum Frankfurt (Autor:in)
  • R. Tetzlaff - , Universitätsklinikum Frankfurt (Autor:in)

Abstract

Cellular neural networks (CNN) are often considered as massive parallel computing arrays for high speed image processing. In order to find appropriate CNN templates, optimization methods are necessary in many cases. We consider the optimization method Iterative Annealing directly using the output of a hardware realization of a CNN-UM Chip. The procedure presented in this contribution generates highly adapted sets of templates for complex image processing tasks. With this approach it is also possible to tune existing CNN programs to compensate inaccuracies of analog CNN hardware leading to noise reduction and more robust behaviour. Finally, an application of practical interest has been developed, by using the introduced method. We achieved the tracing of a certain selected object out of an image sequence showing many moving objects.

Details

OriginalspracheEnglisch
Seiten523-531
Seitenumfang9
PublikationsstatusVeröffentlicht - 2002
Peer-Review-StatusJa
Extern publiziertJa

Workshop

Titel7th IEEE International Workshop on Cellular Neural Networks and their Applications
KurztitelCNNA 2002
Veranstaltungsnummer7
Dauer22 - 24 Juli 2002
BekanntheitsgradInternationale Veranstaltung
StadtFrankfurt am Main
LandDeutschland

Externe IDs

ORCID /0000-0001-7436-0103/work/142240267

Schlagworte

Schlagwörter

  • Annealing, Cellular neural networks, Hardware, Image processing, Image sequences, Iterative methods, Noise reduction, Noise robustness, Optimization methods, Parallel processing