Multi-tasking and Memcomputing with Memristor Cellular Nonlinear Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Memristor Cellular Nonlinear Networks (M-CNNs) have been recently introduced as a functional upgrade of standard CNNs, empowered by the potential of memristors to perform storage and computing functionalities in the same area. This paper exploits the diverse features of M-CNNs, which are equipped with threshold-based binary resistance switching devices, introducing two state-of-the-art image processing M-CNNs: a) the multi-tasking CORNER-EDGE M-CNN, which performs corner or edge detection depending on the initial states of the memristors within the network; b) the memcomputing STORE-EDGE M-CNN, which outputs the edges of a binary input image, that is simultaneously stored in the memristors of the cellular array.

Details

OriginalspracheEnglisch
Titel2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
Herausgeber (Verlag)Wiley-IEEE Press
Seiten1-4
Seitenumfang4
ISBN (elektronisch)978-1-7281-6044-3
ISBN (Print)978-1-7281-6045-0
PublikationsstatusVeröffentlicht - 25 Nov. 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Conference on Electronics, Circuits and Systems (ICECS)

Konferenz

Titel27th IEEE International Conference on Electronics, Circuits and Systems
KurztitelICECS 2020
Veranstaltungsnummer27
Dauer23 - 25 November 2020
StadtGlasgow
LandGroßbritannien/Vereinigtes Königreich

Externe IDs

Scopus 85099479774
Ieee 10.1109/ICECS49266.2020.9294882
ORCID /0000-0002-1236-1300/work/142239541
ORCID /0000-0001-7436-0103/work/142240278

Schlagworte

Schlagwörter

  • Memristors, Image edge detection, Capacitors, Switches, Standards, Resistance, Voltage control