Multitasking and Memcomputing in Memristor Cellular Nonlinear Networks: Insights into the Underlying Mechanisms

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Memristor Cellular Nonlinear Networks (M-CNNs) represent a significant leap in computational technology compared to traditional Cellular Nonlinear Networks (CNNs), thanks to their multi-tasking and memcomputing capabilities. Recent studies have demonstrated various configurations of M-CNNs that utilize these capabilities to perform image processing tasks. This paper employs the Dynamic Route Map circuit-theoretic analysis tool to investigate the dynamic features of M-CNNs and shed light on the underlying mechanisms responsible for their ability to handle multiple tasks. The findings from this theoretical study offer valuable insights for the development of more compact and highly efficient data processing M-CNNs that possess such versatile properties.

Details

OriginalspracheEnglisch
TitelProceedings - 2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods, and Applications to Circuit Design, SMACD 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
ISBN (elektronisch)9798350332650
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheInternational Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)

Konferenz

Titel19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods, and Applications to Circuit Design
KurztitelSMACD 2023
Veranstaltungsnummer19
Dauer3 - 5 Juli 2023
OrtVidaMar Resort Hotel
StadtFunchal
LandPortugal

Externe IDs

ORCID /0000-0002-1236-1300/work/142239555
ORCID /0000-0001-7436-0103/work/142240397
ORCID /0000-0002-6200-4707/work/145698433
ORCID /0000-0002-2367-5567/work/168720265