Multi-scale Computational Approaches for Asphalt Pavements Under Rolling Tire Load

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

Abstract

An innovative consistent simulation chain is used in this chapter for the combination of the advantages of a microstructure finite element (FE) model of asphalt composites with a macrostructure FE model of pavement under tire rolling load. For this study, an existing microstructural FE model of a Stone Mastic Asphalt including coarse aggregates, asphalt mortar, and air voids was parameterized and validated beginning with experimental tests of asphalt mortar. In order to identify the macroscopic (homogenized) material properties of the asphalt mixture for use in the FE computations of two pavement structures under rolling tire load, this validated microstructural model is applied. These calculations are then evaluated using a new macro-micro-interface, which represents the rolling tire loading conditions for the microstructural model by generating time-dependent displacement boundary conditions. The results indicate that the introduced simulation chain allows for the investigation of the processes, stresses and strains inside the asphalt composite at realistic loading conditions. The experimental tests on the component level can be improved and a better comprehension of the interacting processes in asphalt mixtures under rolling tire load can be obtained by using the results.

Details

OriginalspracheEnglisch
TitelLecture Notes in Applied and Computational Mechanics
Herausgeber (Verlag)Springer, Cham
Seiten247-266
Seitenumfang20
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Applied and Computational Mechanics
Band96
ISSN1613-7736

Externe IDs

crossref 10.1007/978-3-030-75486-0_8
ORCID /0000-0002-7497-9659/work/172597625

Schlagworte

Schlagwörter

  • Asphalt pavements, Finite element method, Macro-micro-interface, Multi-scale computational approach, Rolling tire load