Multimodal Traffic Light Control with Connected Vehicles: A Deep Reinforcement Learning Approach

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Multimodal traffic light control is a cost-effective way to deal with urban congestion. The development of V2X (Vehicle to Everything) technologies offers unprecedented data and hence new opportunities for situation awareness, but the conventional control algorithms fall short of fully exploiting the real-time vehicle information at the intersections. In this work, a Double Deep Q-learning (DDQL) approach is proposed for multimodal traffic light control with different priority requests in a connected vehicle environment. The proposed DDQL approach is integrated with the existing actuated controller and is readily implementable. The integrated system can terminate the DDQL controller and switch to the actuated controller for safety when an urgent issue occurs such as an electric power outage. The simulation results demonstrate the advantage of the proposed approach compared with actuated control and indicate the reduction of delays for both public transportation and personal vehicle by the proposed approach.

Details

OriginalspracheEnglisch
Titel2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665455305
PublikationsstatusVeröffentlicht - 11 Sept. 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheInternational Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS)

Konferenz

Titel2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems
KurztitelMT-ITS 2023
Veranstaltungsnummer8
Dauer14 - 16 Juni 2023
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtHoliday Inn ‘Port Saint Laurent'
StadtNice
LandFrankreich

Externe IDs

ORCID /0000-0002-1623-8051/work/147672572
ORCID /0000-0001-6555-5558/work/171064773

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Delay, Double Deep Q-learning, Multimodal traffic light control, Public transportation priority, V2X technology