Multi-Level Structure vs. End-to-End-Learning in High-Performance Tactile Robotic Manipulation

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Florian Voigt - , Technische Universität München (Autor:in)
  • Lars Johannsmeier - , Technische Universität München (Autor:in)
  • Sami Haddadin - , Technische Universität München (Autor:in)

Abstract

In this paper we apply a multi-level structure to robotic manipulation learning. It consists of a hybrid dynamical system we denote skill and a parameter learning layer that leverages the underlying structure to simplify the problem at hand. For the learning layer we introduce a novel algorithm based on the idea of learning to partition the parameter solution space to quickly and efficiently find good and robust solutions to complex manipulation problems. In a benchmark comparison we show a significant performance increase compared with other black-box optimization algorithms such as HiREPS and particle swarm optimization. Furthermore, we validate and compare our approach on a very hard real-world manipulation problem, namely inserting a key into a lock, against state-of-the-art deep reinforcement learning.

Details

OriginalspracheEnglisch
Seiten (von - bis)2306-2316
Seitenumfang11
FachzeitschriftProceedings of Machine Learning Research
Jahrgang155
PublikationsstatusVeröffentlicht - 2020
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel4th Conference on Robot Learning, CoRL 2020
Dauer16 - 18 November 2020
StadtVirtual, Online
LandUSA/Vereinigte Staaten

Schlagworte

Schlagwörter

  • Multi-Level Structure, Optimization, Reinforcement Learning, Robotic Manipulation