Multi-Level Structure vs. End-to-End-Learning in High-Performance Tactile Robotic Manipulation
Publikation: Beitrag in Fachzeitschrift › Konferenzartikel › Beigetragen › Begutachtung
Beitragende
Abstract
In this paper we apply a multi-level structure to robotic manipulation learning. It consists of a hybrid dynamical system we denote skill and a parameter learning layer that leverages the underlying structure to simplify the problem at hand. For the learning layer we introduce a novel algorithm based on the idea of learning to partition the parameter solution space to quickly and efficiently find good and robust solutions to complex manipulation problems. In a benchmark comparison we show a significant performance increase compared with other black-box optimization algorithms such as HiREPS and particle swarm optimization. Furthermore, we validate and compare our approach on a very hard real-world manipulation problem, namely inserting a key into a lock, against state-of-the-art deep reinforcement learning.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2306-2316 |
Seitenumfang | 11 |
Fachzeitschrift | Proceedings of Machine Learning Research |
Jahrgang | 155 |
Publikationsstatus | Veröffentlicht - 2020 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Konferenz
Titel | 4th Conference on Robot Learning, CoRL 2020 |
---|---|
Dauer | 16 - 18 November 2020 |
Stadt | Virtual, Online |
Land | USA/Vereinigte Staaten |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Multi-Level Structure, Optimization, Reinforcement Learning, Robotic Manipulation