Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Chengtie Wu - , Queensland University of Technology, University of Chinese Academy of Sciences (Autor:in)
  • Wei Fan - , Queensland University of Technology (Autor:in)
  • Yufang Zhu - , University of Shanghai for Science and Technology (Autor:in)
  • Michael Gelinsky - , Zentrum für Translationale Knochen- Gelenk- und Weichgewebeforschung (Autor:in)
  • Jiang Chang - , University of Chinese Academy of Sciences (Autor:in)
  • Gianaurelio Cuniberti - , Professur für Materialwissenschaft und Nanotechnik, Österreichische Akademie der Wissenschaften, Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Victoria Albrecht - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Thor Friis - , Queensland University of Technology (Autor:in)
  • Yin Xiao - , Queensland University of Technology (Autor:in)

Abstract

Hyperthermia and local drug delivery have been proposed as potential therapeutic approaches for bone defects resulting from malignant bone tumors. The development of bioactive materials with magnetic and drug delivery properties may potentially meet this target. The aim of this study was to develop a multifunctional mesoporous bioactive glass (MEG) scaffold system for both hyperthermic and local drug delivery applications. To this end iron (Fe)-containing MBG (Fe-MBG) scaffolds with a hierarchical large pores structure (300-500 mu m) and fingerprint-like mesopores (4.5 nm) have been prepared. The effects of Fe on the mesopore structure and physiochemical, magnetic, drug delivery and biological properties of MBG scaffolds have been systematically investigated. The results show that the morphology of the mesopores varied from straight channels to curved fingerprint-like channels after incorporation of Fe into MBG scaffolds. The magnetism of MEG scaffolds can be tailored by controlling the Fe content. Furthermore, the incorporation of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and the expression of bone-related genes (ALP and OCN) in human bone marrow mesenchymal stem cells (BMSC) attached to the scaffolds. The Fe-MBG scaffolds obtained also possessed high specific surface areas and demonstrated sustained drug delivery. Thus Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunctionality of Fe-MBG scaffolds suggests that there is great potential for their use in the treatment and regeneration of large-bone defects caused by malignant bone tumors through a combination of hyperthermia, local drug delivery and osteoconductivity. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Details

OriginalspracheEnglisch
Seiten (von - bis)3563-3572
Seitenumfang10
FachzeitschriftActa Biomaterialia
Jahrgang7
Ausgabenummer10
PublikationsstatusVeröffentlicht - Okt. 2011
Peer-Review-StatusJa

Externe IDs

Scopus 80052266276
WOS 000295301100004
PubMed 21745610
ORCID /0000-0001-9075-5121/work/142237794

Schlagworte

Schlagwörter

  • Bone tumors, Drug delivery, Hyperthermia, Magnetic scaffolds, Mesoporous bioactive glasses