Mr-Fosdick at SemEval-2023 Task 5: Comparing Dataset Expansion Techniques for Non-Transformer and Transformer Models: Improving Model Performance through Data Augmentation
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
In supervised learning, a significant amount of data is essential. To achieve this, we generated and evaluated datasets based on a provided dataset using transformer and non-transformer models. By utilizing these generated datasets during the training of new models, we attain a higher balanced accuracy during validation compared to using only the original dataset.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023) |
| Redakteure/-innen | Atul Kr. Ojha, A. Seza Dogruoz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori |
| Herausgeber (Verlag) | Association for Computational Linguistics (ACL) |
| Seiten | 88-93 |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 9781959429999 |
| Publikationsstatus | Veröffentlicht - 2023 |
| Peer-Review-Status | Ja |
Workshop
| Titel | 17th International Workshop on Semantic Evaluation |
|---|---|
| Kurztitel | SemEval 2023 |
| Veranstaltungsnummer | 17 |
| Beschreibung | co-located with the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 |
| Dauer | 13 - 14 Juli 2023 |
| Webseite | |
| Ort | Westin Harbour Castle & Online |
| Stadt | Toronto |
| Land | Kanada |
Externe IDs
| ORCID | /0000-0002-5985-4348/work/174432434 |
|---|