Motion Segmentation and Multiple Object Tracking by Correlation Co-Clustering

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Margret Keuper - , Universität Mannheim (Autor:in)
  • Siyu Tang - , Max-Planck-Institut für Intelligente Systeme, Eberhard Karls Universität Tübingen (Autor:in)
  • Bjoern Andres - , Max-Planck-Institut für Informatik, Bosch Center for Artificial Intelligence, Eberhard Karls Universität Tübingen (Autor:in)
  • Thomas Brox - , Albert-Ludwigs-Universität Freiburg (Autor:in)
  • Bernt Schiele - , Max-Planck-Institut für Informatik (Autor:in)

Abstract

Models for computer vision are commonly defined either w.r.t. low-level concepts such as pixels that are to be grouped, or w.r.t. high-level concepts such as semantic objects that are to be detected and tracked. Combining bottom-up grouping with top-down detection and tracking, although highly desirable, is a challenging problem. We state this joint problem as a co-clustering problem that is principled and tractable by existing algorithms. We demonstrate the effectiveness of this approach by combining bottom-up motion segmentation by grouping of point trajectories with high-level multiple object tracking by clustering of bounding boxes. We show that solving the joint problem is beneficial at the low-level, in terms of the FBMS59 motion segmentation benchmark, and at the high-level, in terms of the Multiple Object Tracking benchmarks MOT15, MOT16, and the MOT17 challenge, and is state-of-the-art in some metrics.

Details

OriginalspracheEnglisch
Aufsatznummer1
Seiten (von - bis)140-153
Seitenumfang14
FachzeitschriftIEEE transactions on pattern analysis and machine intelligence : TPAMI
Jahrgang42
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2020
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85055056072
dblp journals/pami/KeuperTABS20
ORCID /0000-0001-5036-9162/work/161407122

Schlagworte

Bibliotheksschlagworte