Morphology Features Self-Learned by Explainable Deep Learning for Atrial Fibrillation Detection Correspond to Fibrillatory Waves

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Abstract

The main challenge in utilizing deep learning (DL) for clinical diagnostic support is its lack of explainability and interpretability. Recent approaches aim to explain DL decisions from electrocardiogram (ECG) analysis by tracing model explanations back to beat segments. Fibrillatory (F) waves, as a main characteristic of atrial fibrillation (AF), are irregularly distributed over the signal and have not yet been considered. Using 477 publicly available AF ECGs, we systematically investigated the relationship between F waves and reliable model explanations. F waves were detected using peak detection after removing beat-aligned QT templates. We employed a convolutional neural network , derived from an explainable ECG architecture (xEC-GArch), which uses self-learned morphology features for AF detection. Analysis of variance revealed an increased mean relative relevance (rR) of the F waves compared to the rR of the full waveform (+13.5 %, p
Titel in Übersetzung
Durch erklärbares Deep Learning selbst erlernte morphologische Merkmale zur Erkennung von Vorhofflimmern entsprechen Flimmerwellen

Details

OriginalspracheEnglisch
Seiten (von - bis)1-4
Seitenumfang4
FachzeitschriftComputing in Cardiology
Jahrgang51
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel51st Computing in Cardiology Conference
KurztitelCinC 2024
Dauer8 - 11 September 2024
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtKarlsruher Institut für Technologie
StadtKarlsruhe
LandDeutschland

Externe IDs

ORCID /0000-0003-4012-0608/work/175220129
ORCID /0000-0002-1984-580X/work/175220155
Mendeley f804691e-fced-3c2e-b4a9-5dec779a10cc

Schlagworte

Forschungsprofillinien der TU Dresden

DFG-Fachsystematik nach Fachkollegium