Morphological evolution of Ge/Si nano-strips driven by Rayleigh-like instability

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marco Salvalaglio - , Technische Universität Dresden, Innovations for High Performance Microelectronics (Autor:in)
  • Peter Zaumseil - , Innovations for High Performance Microelectronics (Autor:in)
  • Yuji Yamamoto - , Innovations for High Performance Microelectronics (Autor:in)
  • Oliver Skibitzki - , Innovations for High Performance Microelectronics (Autor:in)
  • Roberto Bergamaschini - , Università degli Studi di Milano Bicocca (Autor:in)
  • Thomas Schroeder - , Innovations for High Performance Microelectronics (Autor:in)
  • Axel Voigt - , Technische Universität Dresden (Autor:in)
  • Giovanni Capellini - , Roma Tre University (Autor:in)

Abstract

We present the morphological evolution obtained during the annealing of Ge strips grown on Si ridges as a prototypical process for 3D device architectures and nanophotonic applications. In particular, the morphological transition occurring from Ge/Si nanostrips to nanoislands is illustrated. The combined effect of performing annealing at different temperatures and varying the lateral size of the Si ridge underlying the Ge strips is addressed by means of a synergistic experimental and theoretical analysis. Indeed, three-dimensional phase-field simulations of surface diffusion, including the contributions of both surface and elastic energy, are exploited to understand the outcomes of annealing experiments. The breakup of Ge/Si strips, due to the activation of surface diffusion at high temperature, is found to be mainly driven by surface-energy reduction, thus pointing to a Rayleigh-like instability. The residual strain is found to play a minor role, only inducing local effects at the borders of the islands and an enhancement of the instability. Published by AIP Publishing.

Details

OriginalspracheEnglisch
Aufsatznummer022101
Seitenumfang5
FachzeitschriftApplied physics letters
Jahrgang112
Ausgabenummer2
PublikationsstatusVeröffentlicht - 8 Jan. 2018
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 85040460434
ORCID /0000-0002-4217-0951/work/142237387

Schlagworte

Schlagwörter

  • SURFACE-DIFFUSION, CAPILLARY INSTABILITIES, THIN-FILMS, NANOSTRUCTURES, STABILITY, MODEL, GE, SI