Moment explosions and long-term behavior of affine stochastic volatility models

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Martin Keller-Ressel - , ETH Zurich (Autor:in)

Abstract

We consider a class of asset pricing models, where the risk-neutral joint process of log-price and its stochastic variance is an affine process in the sense of Duffie, Filipovic, and Schachermayer. First we obtain conditions for the price process to be conservative and a martingale. Then we present some results on the long-term behavior of the model, including an expression for the invariant distribution of the stochastic variance process. We study moment explosions of the price process, and provide explicit expressions for the time at which a moment of given order becomes infinite. We discuss applications of these results, in particular to the asymptotics of the implied volatility smile, and conclude with some calculations for the Heston model, a model of Bates and the Barndorff-Nielsen-Shephard model.

Details

OriginalspracheEnglisch
Seiten (von - bis)73-98
Seitenumfang26
FachzeitschriftMathematical finance
Jahrgang21
Ausgabenummer1
PublikationsstatusVeröffentlicht - Jan. 2011
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

ORCID /0000-0003-0913-3363/work/167706928

Schlagworte

Schlagwörter

  • Affine process, Implied volatility smile, Moment explosions, Stochastic volatility