Moment equalities for sums of random variables via integer partitions and Faà di Bruno's formula
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We give moment equalities for sums of independent and identically distributed random variables including, in particular, centered and specifically symmetric summands. Two different types of proofs, combinatorial and analytical, lead to 2 different types of formulas. Furthermore, the combinatorial method allows us to find the optimal lower and upper constants in the Marcinkiewicz-Zygmund inequalities in the case of even moment-orders. Our results are applied to give elementary proofs of the classical central limit theorem (CLT) and of the CLT for the empirical bootstrap. Moreover, we derive moment and exponential inequalities for self-normalized sums.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 558-575 |
Seitenumfang | 18 |
Fachzeitschrift | Turkish journal of mathematics |
Jahrgang | 38 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2014 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Bootstrap, Faà di bruno's chain rule, Integer partitions, Marcinkiewicz-Zygmund inequalities, Moments, Self-normalized sums